
# M-100 Electric Drivehead



## M-100 Electric Drivehead

We provide a complete line of artificial lift technologies and oilfield equipment around the globe. Our entire line of direct driveheads are specifically designed for use with progressing cavity pumping systems.

Our M-100 Electric drivehead employs the highly efficient and extremely safe hydrodynamic backspin braking system and is designed for medium to high horsepower applications. As part of our commitment to safety, all of our direct drives have a fully enclosed and hinged belt guard. Each drivehead is tested and inspected to meet our quality requirements.

#### **Features and Benefits**

- Robust frame
- Bearing box is designed with a three bearing system
- Detachable environmental stuffing box
- Large brake reservoir for heat dissipation
- Repeatable and reliable brake curve
- Induction hardened seal surfaces eliminate shaft grooving and increases seal life
- Operator-friendly guards and motor adjustments

- Easy-to-adjust hinged door for simple belt tightening
- Easy-to-adjust motor height
- Accessible fill/drain spouts for easy oil changes
- Minimal maintenance
- Over 1500 proven M-100 drives in operation worldwide
- Service and technical support

#### Options

- Hydraulic motor
- Rope style stuffing box
- Jampak stuffing box
- Leak free integral stuffing box
- Retrofit stuffing box

#### Accessories

- Anti-ejection clamp
- · Lock-out device
- Polished rod guard
- Booth guard
- Support arms
- Shipping/support stands
- Jackshaft
- Tachometer



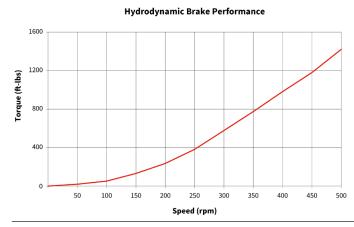
### Specifications

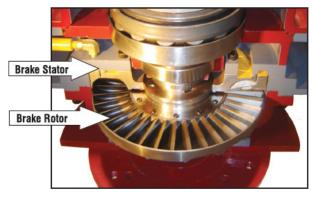
| Drive Type                 | Direct                                                     |
|----------------------------|------------------------------------------------------------|
| Shaft Type                 | Hollow                                                     |
| Drive Style                | Bearing Box                                                |
| Input Style                | Vertical                                                   |
| Drive Ratio                | 1:1                                                        |
| Backspin Control           | Hydrodynamic                                               |
|                            |                                                            |
| Ratings                    |                                                            |
| Max. Output Torque         | 2000 ft-lbs (2712 Nm)                                      |
| Thrust Bearing             | 220,310 ISO lbf                                            |
| Thrust Bearing*            | 57,120 Ca90 lbf                                            |
| Thurst Bearing**           | 30,240 750 million cycles lbf                              |
| Maximum Speed              | 600 rpm                                                    |
| Horsepower Rating***       | 20 to 100                                                  |
| Frame Type                 | Single Motor                                               |
| Compatible Frame Size NEMA | 256T, 284T, 286T, 324T, 326T, 364T, 365T, 404T, 405T, 444T |
| Compatible Frame Size IEC  | 160L, 180M, 180L, 200M, 200L, 225S, 225M, 250S, 250M, 280S |
| Polish Rod Size            | 1 1/4" or 1 1/2" (32 mm or 38 mm)                          |
| Max. Operating Temp.       | 285° F/140° C                                              |
|                            |                                                            |

Ca90 load rating is for 90 million revolutions. Reducing load one half increases life 10 times. Reducing rpm by one half doubles hours of life.

| Dimensions (excluding motor)            |                                |
|-----------------------------------------|--------------------------------|
| Height w/Retro Stuffing Box             | 50" (1270 mm)                  |
| Height w/Integral Stuffing Box          | 35 1/2" (902 mm)               |
| Width                                   | 35" (889 mm)                   |
| Input Shaft Size                        | 3 1/4" (83 mm)                 |
| Weight (no stuffing box)                | 1,215 lbs (552 kg)             |
| Other Data                              |                                |
| API Wellhead Connection                 |                                |
|                                         | 3 1/8" – 3,000 psi R31 Flange  |
|                                         | 4 1/16" – 3,000 psi R37 Flange |
|                                         | 5 1/8" – 2,000 psi R41 Flange  |
|                                         | 5 1/8" - 3,000 psi R41 Flange  |
| Prime Mover                             | Electric or Hydraulic          |
| DriveN Sheave Max. Dia.1                | 31.5" (800 mm)                 |
| DriveR Sheave Min. Dia.12               | 14" (356 mm)                   |
| DriveR Sheave Max. Dia.1                | Depends on Motor Size          |
| Drive Center to Center Min <sup>3</sup> | 21 3/4" - 25 5/8"              |
| Drive Center to Center Max <sup>3</sup> | 26 3/8" - 28 7/8"              |

<sup>&</sup>lt;sup>1</sup>Sheave dia. is based on C-groove belts. Values may change when other styles of belts are used


## Hydrodynamic Brake


We have incorporated the well-proven principle of the Hydrodynamic Brake into the M-100 direct drive to provide safe, reliable and smooth backspin control.

The hydrodynamic brake consists of a stationary half (stator) and a rotary half (rotor). The stator is bolted into the housing and the rotor is coupled to the shaft. During normal operation the rotor spins freely. When the unit goes into backspin, the rotor begins to rotate in the counter clockwise direction. The working fluid is then forced to the outside of the rotor and creates a circular flow path inside the brake cavity. As the energized fluid from the rotor comes into contact with the stationary fins of the stator, the energy is transferred to the stator and then back to the working fluid as heat. A small amount of working fluid is continually removed from the system and replaced with new fluid. The working fluid contained in the drivehead reservoir is used as the braking medium, which allows the energy stored in the fluid column and rod string to safely dissipate without the drivehead reaching excessive backspin speeds.

#### Advantages of the Hydrodynamic Braking System

- Non-friction brake eliminates wear on brake components
- Brake capable of 1,420 ft-lbs (minimum) resisting torque at 500 rpm
- Reliable and repeatable braking
- Backspin energy is absorbed by the working fluid reservoir
- Consistent braking with minimal maintenance throughout the drivehead's life







<sup>&</sup>quot;Approximately 3 years at 500 rpm

<sup>&</sup>quot;" Maximum HP rating based on frame size only. Care must be taken in selecting motor and sheave combinations to ensure input rod torque is not exceeded.

<sup>&</sup>lt;sup>2</sup> Consult motor manufacturer

<sup>&</sup>lt;sup>3</sup>Center to center distances are based on using the smallest and largest compatible frame sizes.