Cerberus v15.0 Módeling Software

Designed to meet today's design and monitoring challenges

Since 1995, Cerberus'" has been the leading intervention modeling software for planning and performing coiled tubing, wireline, and jointed pipe operations. Cerberus models provide advanced calculations for fatigue life, tubing forces, and hydraulics providing operational contidence. Featuring cloud connectivity, the entire organization now has access to the complete picture of operations and assets in real-time, enabling immediate process improvements, reduction of NPT, and unlocking opportunities to gain efficiencies for improving the bottom line.

Utilize Cerberus for the following:

- Tubing, jointed pipe, and wireline forces analysis
- Fatigue life tracking
- String design and selection
- Wireline weak point selection analysis
- Real-time string management
- Bottom hole assembly (BHA) configuration
- Local and cloud* real-time forces monitoring
- Hydraulics modeling

Max Completions[™] Integration

Live TFA Connection

Push Orpheus[™] projects directly from Cerberus to Max Completions, allowing for data-driven decisions.

Real-Time Fatigue Connection

Share real-time concurrent string views between field operations and remote users to make pipe management and operational decisions (cuts, pulls, pump rates, etc.).

District Administration Functionality

Manage all connected company strings and projects with Cerberus. Designated district administrators can push projects, strings, and more to and from the unit's PC to remotely set up real-time jobs and verify post-job field results.

*Real-time monitoring through cloud connectivity is available through Max Completions.

Orpheus Coiled tubing, jointed pipe, wireline

Orpheus performs cumulative forces analysis to determine job feasibility and anticipate possible problems with extended reach tubing and wireline limits with fluid dynamics.

- Navigate highly deviated wellbores or other obstacles by modeling BHAs in real time
- Analyze the surface weights acquired during a job, identify apparent friction, and help predict the expected friction factor to be used in future projects
- Model tubing forces analysis (TFA) with multiple coefficients of friction (CoF) to create your broomsticks and determine when issues are arising in the wellbore

Achilles and Hercules Coiled tubing

Achilles[™] fatigue calculations remain the industry benchmark for coiled tubing life monitoring. Today's complex applications make it critical to track the fat lly dangerous failure at the wellsite.

Hercules[™] tubing limits plot is the widely accepted model that uses von Mises combined stress to predict tubing burst and collapse limits. The model considers helical buckling, maximum expected pressures, diameter growth, and torque.

Wireline Weak Point Analysis Wireline

Understanding your wireline and tools' parameters ensures a successful run. The wireline weak point analysis displays your project's simulated surface weight (RIH and POOH), allowing you to visualize the maximum overpull prior to activating the weak point or disconnect. It also allows you to visualize the maximum surface weight for the planned operation and check for potential cable tension to ensure you are working within the asset's limits.

0	6]	0	0			danie.mirg2 1472	11408	42110	1.000	1.01	8.209	1000	242	194	0.35	Diventiale 2403	6/11/3521 30122-01 Her	
	61	0	Θ			Serie to ag 6/26/2020	1100	62-36	1.800	1.944	0.110						4/16-301 2010/1978	
0	61	0	0			38/yg 22 28	1000	6/ 600	1.000	8.425	910	200	246	385	145	Cur.	2373A(855) 23735 PM	
	10	0	0			101023-0	996	C7-810	1000	1325	013	104	13	20	578	O/F	W2/3625 1x2/04	
	61	0	0	Arteres	184	@fomue 48130-8	1005	+7.125	1.000	1,625	110		0.12	85		Get .	AV 2011 LALIN	
	61	0	0	imente	15-5	2.800 OF L400 225 Selfect	11400	65-1400	1:000	0.379	9179				0		10/10/0108 2/29/32 PM	
	61	0	0	ntanta	45-1	10-138ring1	5940	67125	1.000	3.325	0.125	79.05	617	19	3.17	U5:1148.5	4/16.3521 52430 PM	
	67	0	0	Atlanta	101	100 Chines 8	3438	425-1000	1.000	6.629	0,13	100	0.49		0.99	CH.	4/18/2021	
	61	0	0	Duration/bet	Unice0007	ining 7/2/2025	1100	67.16	L.900	8.894	0.209	4347	2.15	78	0.65	Duration Provides	24/208 38-817 Her	
	61	0	0	Duration/621	UNIORCS?	2011 (2020)	1100	69-190	1.900	1.230	0.229		0	1	0		19036845218 MA	
	61	0	0	Dr barie	BR LINIE	AJ 10003 2.875 04130	1000	00 c.H	2.0%	3.20	\$15	17530	243	100	2.17	Ô#	2714-3625 2017/18 Jan	
	61	0	0	(PP PWH)	EN LOUIS 2	101 M 179 3625	1100	67.100	1.500	1,01	0,200			1	. 0		1/9/260 3:3:22	
	al																	
0	61	0	0	Paral		407 1100 1.375 100H	11738	49-1100	115	6375	+175			1			9/18/2021 3127-04 402	
0	61	0	0	Ghanat	Teverlarine	409-2415-11	29000	CP 1300	2215	8.250	0.343		4		0			
	61	0	0	same .	Teastorine	105-1100 1.75	29748	Ch1300	1.260	0.318	813				0		1011/2010	
0	61	0	0	KAN Text (M	4,02.21.1	2xm0138405 671286	11121	611100	2.000	1,201	0.114	2621-0	20.14	825.5	0.08	SIZI (mb. et	10/11/0009 2/45:00 PM	
	67	0	Θ	NO.473899	newww-1	10110 (1011)	1900	65480	1:000	9.329	9.118		0.17	3425	0.2	Deno uniti processi	4/15/801 20100 PM	
0	67	0	0	2010	ARM .	Next string \$6 27	14050	G7-880	1.000	1.15	8.209	100	0.4	1365	0.2	NewPopulation	4/2418831 4/32/07 PM	
0	61	0	0	399.10	reix	3014034482	1900	chaid	1.000	1.03	0.118						4915-350 2:30:57 PM	
	61	0	0	2018	181	1010017-012	1000	61.16	1.900	1.84	0.209	201	2.18	- 76	. 07	IT 475 while	8/14/3001 9:09:02 Mail	
	61	0	0	Starla	184	101111 (400) 1011	11900	G5-190	1.900	1 2 14	0.209		1.10	710	0.13	óe	#16.301 13x3x PM	
	61	θ	0	20xm	Age .	\$8140 Std.70	12880	45 190	1.900	1.54	0.300	588	041	1 16	0.28	100 21279 410	5-1:3525 8-10 13 MM	
	61	θ	0	294110	181	10003 - CT 5c + w 82	17948	67.900	1.000	6.228	9,279	INH	82.12		46.92	SCHWIT 2-DF	30/11/0108 30-02:17 Mpi	
0	61	0	0	Teres	Unit Opel	Gen1471	12000	67-1900	1000	5.80	0,224	62010	24	6,000	3.45	Uninfast #4	6/11/3531 30:58:21 MAR	
																	Taxan a canada a	

String Inventory Management Coiled tubing

With this central location, you can now view, analyze, and access your strings in real-time. This includes maximum and average fatigue life, running footage, job counts, and more.

