Red Thread[™] IIA (Product Data)

Applications

- Service Station
- Vent/Vapor Recovery
- Bulk Plant Terminals
- Fueling Terminals

Materials and Construction

All pipe is manufactured by filament winding process using amine-cured epoxy thermosetting resin to impregnate strands of continuous glass filaments with a resin-rich interior surface. The operating pressure of the pipe is up to 250 psig (17.2 bar) with continuous operating temperature to 150°F (66°C).

Red Thread IIA is Listed with Underwriters Laboratories Standard 971-2004 for non-metallic underground piping for motor vehicle (MV), high blend (HB), concentrated (CT) and aviation and marine (A&M) fuels. The pipe and fittings are also Listed with Underwriters Laboratories of Canada with both Listings under File MH9162.

Nominal Dimensional Data

- Central Fuel Oil Systems
- Marinas Terminals
- Ethanol Fuel Blends
- Biodiesel Fuel

Fittings

Fittings are manufactured with the same chemical and temperature capabilities as the pipe. Depending on the configurations and size, the fittings construction method will be compression molded, contact molded, fabricated or filament wound and are described in FH1250.

Testing

Installed pipe systems should be tested prior to use to assure soundness of all joints and connections. Locate pressure gauge in close proximity to the pressurizing equipment, not directly on the piping system. A pressure gauge with the test pressure at mid-scale is recommended.

- Diesel Exhaust Fluid
- UL/ULC Systems that require MV, HB, CT, A&M Fuels

Joining System

- **T.A.B.™** The primary joining method for pipe joints promoting fast, positive makeup and prevents "backout" during curing.
- Bell & Spigot The primary joining method for fitting joints.

These joints assist the installer and assures a fast trouble-free installation. Adhesive for this system is Series 8000. T.A.B. spigots can be bonded into tapered bells and tapered spigots can be Bonded into T.A.B. bells using standard bonding procedures for tapered joints.

ASTM D2996 Designation Code -

RTRP-11AW13110

Pipe Size		Inside Diameter		Outside Diameter		Wall Thickness		Weight		Pressure/ Temperature Max. Rating at 150°F (66°C)		Mill Test Pressure		Minimum Bending Radius	
in	mm	in	mm	in	mm	in	mm	lbs/ft	kg/m	psig	МРа	psig	МРа	ft	m
2	50	2.238	57	2.372	60	0.067	1.70	0.42	0.63	250	1.72	375	2.59	102	31.0
3	80	3.363	85	3.559	90	0.098	2.49	0.92	1.37	175	1.21	300	2.07	153	46.5
4	100	4.364	111	4.554	116	0.095	2.41	1.15	1.71	125	0.86	265	1.83	195	59.5
6	150	6.408	163	6.686	170	0.139	3.53	2.47	3.68	20	0.14	265	1.83	287	87.4

View of Joint Illustrations

T.A.B.

Bell & Spigot

Fiber Glass Systems | NOY Completion & Production Solutions

fgspipe@nov.com

nov.com/fgs

Typical Mechanical Properties

Pine Pronerty	75°F	24°C MPa	200°F	93°C MPa	Method		
The Troperty	psi		psi				
Axial Tensile							
Ultimate Stress		9,530	65.7	6,585	45.4	ASTM D2105	
Modulus of Elasticity		1.68 x 10 ⁶	11,584	1.42 x 10 ⁶	9,791	ASTM D2105	
Poisson's Ratio, $v_{ab}(v_{ba})^{(1)}$		0.3	5 (0.61)				
Axial Compression							
Ultimate Stress		12,510	86.3	8,560	59.0	ASTM D695	
Modulus of Elasticity	0.677 x 10 ⁶	4,668	0.379 x 10 ⁶	2,613	ASTM D695		
Beam Bending							
Modulus of Elasticity (Long Ter	2.6 x 10 ⁶	17,927	0.718 x 10 ⁶	4,951	ASTM D2925		
Hydrostatic Burst							
Ultimate Hoop Tensile Stress	40,150	277	36,480	252	ASTM D1599		
Hydrostatic Hoop Design Stress	;						
Static 20 Year Life LTHS - 95% LCL		-	-	18,203 - 14,689	125.5 - 101.3	ASTM D2992 - Procedure B	
Static 50 Year Life LTHS - 95% LCL		-	-	16,788 - 13,142	115.7 - 90.6	ASTM D2992 - Procedure B	
Parallel Plate							
Hoop Modulus of Elasticity	3.02 x 10 ⁶	20,822	-	-	ASTM D2412		
Shear Modulus	1.76 x 10 ⁶	12,135	1.63 x 10 ⁶	11,250	-		

Typical Physical Properties

Pipe Property	Value	Value	Method
Thermal Conductivity	0.23 BTU/hr•ft•°F	0.4 W/m°C	ASTM D177
Thermal Expansion	10.7 x 10 ⁻⁶ in/in °F	19.3 x 10 ⁻⁶ mm/mm °C	ASTM D696
Absolute Roughness	0.00021 in	0.00053 mm	
Specific Gravity		1.8	ASTM D792

Ultimate Collapse Pressure

Size		Collapse Pressure ⁽²⁾⁽³⁾⁽⁴⁾						
5120		psig		МРа				
in mm		75°F	150°F	24°C	66°C			
2	50	177	133	1.22	0.92			
3	80	171	129	1.18	0.89			
4	100	69	51	0.48	0.35			
6	150	69	51	0.48	0.35			

Pipe Length

Size		Standard		Random		
in mm		ft	m	ft	m	
2-6	50-150	15	4.57	22-25	6.7-7.62	

⁽¹⁾ V_{ha} = The ratio of axial strain to hoop strain resulting from stress in the hoop direction. V_{ah} = The ratio of hoop strain to axial strain resulting from stress in the axial direction.

⁽²⁾ The differential pressure between internal and external pressure which causes collapse.

⁽³⁾ A 0.67 design factor is recommended for short duration vacuum service. A full vacuum is equal to 14.7 psig (0.101 MPa) differential pressure at sea level.

⁽⁴⁾ A 0.33 design factor is recommended for sustained (long-term) differential collapse pressure design and operation.

National Oilwell Varco has produced this brochure for general information only, and it is not intended for design purposes. Although every effort has been made to maintain the accuracy and reliability of its contents, National Oilwell Varco in no way assumes responsibility for liability for any loss, damage or injury resulting from the use of information and data herein nor is any warranty expressed or implied. Always cross-reference the bulletin date with the most current version listed at the web site noted in this literature.

© 2017 National Oilwell Varco All rights reserved FH1200ENG February 2017

Fiber Glass Systems

17115 San Pedro Avenue, Ste 200 San Antonio, Texas 78232 USA Phone: 210 477 7500 Fax: 210 477 7560

fgspipe@nov.com

nov.com/fgs