Centricast RB-1520[™] Product Data

Applications	 Dilute Acids Solvents Caustics Chemical Process Solutions Salts
Materials and Construction	All pipe is manufactured with high strength glass fabrics and a highly resilient formulation of aromatic amine cured epoxy resin. A 50-mil integral corrosion barrier of pure resin provides excellent corrosion resistance. The pipe's proprietary resin formulation provides the toughness for many corrosive slurries. A 10-mil resin-rich reinforced external corrosion barrier provides excellent corrosion resistance and protection from ultraviolet (UV) radiation. Fiber Glass Systems warrants CENTRICAST RB-1520 pipe and fittings against UV degradation of physical properties and chemical resistance for 15 years. Pipe is available in 11/2" through 14" diameters with pressure ratings up to 150 psig at a maximum operating temperature of 225°F. Centricast RB-1520 comes in 20' nominal or exact lengths from 18.0-20.4 feet long.
Fittings	Fittings are manufactured with the same chemical/temperature capabilities as the pipe. Depending on the particular part and size, fittings will be compression molded, contact molded, hand fabricated or filament wound.
Joining Systems	Socket Joint Adhesive bonded straight socket joint with positive stops. This is the standard for Centricast piping systems.

Nomina	Nominal Dimensional Data											
Pipe Size	I.D.		O.D.		Wall Thickness		Reinforcement Thickness		Weight		Capacity	
(In)	(ln)	(mm)	(In)	(mm)	(In)	(mm)	(In)	(mm)	(Lbs/Ft)	(kg/m)	(Gal/Ft)	(CuFt/Ft)
11/2	1.55	39.4	1.90	48.3	0.18	4.4	0.12	2.9	0.58	0.86	0.10	0.013
2	2.06	52.2	2.38	60.3	0.16	4.1	0.10	2.5	0.68	1.01	0.17	0.023
3	3.18	80.8	3.50	88.9	0.16	4.1	0.10	2.5	1.03	1.53	0.41	0.055
4	4.18	106.2	4.50	114.0	0.16	4.1	0.10	2.5	1.34	1.99	0.71	0.095
6	6.27	159.0	6.63	168.0	0.18	4.6	0.12	3.0	2.23	3.32	1.60	0.214
8	8.23	209.0	8.63	219.0	0.20	5.1	0.14	3.6	3.24	4.82	2.76	0.369
10	10.30	262.0	10.75	273.0	0.22	5.6	0.16	4.1	4.45	6.63	4.34	0.580
12	12.30	312.0	12.75	324.0	0.24	6.1	0.18	4.6	5.77	8.59	6.14	0.821
14	13.50	343.0	14.00	356.0	0.24	6.1	0.18	4.6	6.35	9.45	7.46	0.997
Tolerances o	r maximum	/minimum	limits can	be obtaine	d from NC	OV Fiber Gl	ass Systems					

Prop	Properties of Pipe Sections Based on Minimum Reinforced Walls							
Size (In)	Reinforcement End Area (In²)	Reinforcement Moment of Inertia (In⁴)	Reinforcement Section Modulus (In ³)	Nominal Wall End Area (In²)				
1 ¹ /2	0.67	0.27	0.28	0.97				
2	0.71	0.46	0.39	1.11				
3	1.07	1.54	0.88	1.68				
4	1.38	3.35	1.49	2.18				
6	2.45	13.00	3.92	3.64				
8	3.73	33.60	7.79	5.29				
10	5.32	74.60	13.90	7.28				
12	7.11	140.00	22.00	9.43				
14	7.82	187.00	26.70	10.40				

Average Physical Properties

Property	75°F psi	24°C MPa	200°F psi	99°C MPa	225°F psi	107°C MPa
Axial Tensile - ASTM D2105 Ultimate Stress Design Stress Modulus of Elasticity	30,000 7,500 2.5x10 ⁶	210 52 17,200	26,000 6,500 2.2x10 ⁶	180 45 15,200	25,000 6,250 2.1x10 ⁶	170 43 14,500
Poisson's Ratio v	0.	15	0.1	15	0.1	15
Axial Compression - ASTM D695 Ultimate Stress Design Stress Modulus of Elasticity	35,000 8,750 3.2x10 ⁶	240 60 22,000	28,000 7,000 2.8x10 ⁶	190 48 19,300	17,000 4,250 2.7x10 ⁶	110 29 18,600
Beam Bending - ASTM D2925 Ultimate Stress Design Stress ⁽¹⁾ Modulus of Elasticity (Long Term)	40,000 5,000 3.7x10 ⁶	280 34 26,000	35,000 4,375 3.2x10 ⁶	240 30 22,000	33,000 4,125 3.1x10 ⁶	230 28 21,000
Hydrostatic Burst - ASTM D1599 Ultimate Hoop Tensile Stress Hoop Tensile Modulus of Elasticity	30,000 2.4x10 ⁶	210 17,000	26,000 2.1x10 ⁶	180 14,500	25,000 2.0x10 ⁶	170 13,800
Hydrostatic Design - ASTM D2992, Procedure B - Hoop Tensile Stress Static 50 Year @ 75°F	19,270	130	-	-	-	-

⁽¹⁾ Stress and modulus values can be interpolated between temperatures shown.

Coefficient of Linear Thermal Expansion - ASTM D696	$\begin{array}{rrrr} \mbox{Non-Insulated Pipe: } 9.6 \ x \ 10^{-6} \ in/in/^{\circ} \mbox{F} & \cdot \ 17.4 \ x \ 10^{-6} \ mm/mm/^{\circ} \mbox{C} \\ \mbox{Insulated Pipe: } 13.0 \ x \ 10^{-6} \ in/in/^{\circ} \mbox{F} & \cdot \ 23.5 \ x \ 10^{-6} \ mm/mm/^{\circ} \mbox{C} \\ \end{array}$
Thermal Conductivity	0.07 BTU/-hr-ft-°F • 0.04 W/-m-°C
Specific Gravity - ASTM D792	1.41
Flow Factor - SF / Hazen-Williams Coefficient	150
Absolute Surface Roughness	0.00021 Inch • 0.0053 mm
Manning's Roughness Coefficient, n	0.009

Testing:

See NOV Flber Glass Systems' Socket Joint Installation Handbook.

When possible, the piping system should be hydrostatically tested prior to beginning service. Care should be taken when testing to avoid water hammer. All anchors, guides and supports must be in place prior to testing the line.

Test pressure should not be more than $1\frac{1}{2}$ times the working pressure of the piping system and never exceed $1\frac{1}{2}$ times the rated operating pressure of the lowest rated component in the system.

Water Hammer:

Care should be taken when designing an FRP piping system to eliminate sudden surges. Soft start pumps and slow actuating valves should considered.

Pressure Ratings for Uninsulated Piping Systems ⁽¹⁾⁽²⁾								
	Maximu @	m Internal Pres 225°F (psig)	ssure	Maximum External Pressure ⁽⁶⁾				
Pipe Size (In)	Socket Pressure Fittings ⁽³⁾	Flanged Pressure Fittings ⁽⁴⁾	Other Pressure Fittings ⁽⁵⁾	75°F	150°F	225°F		
1 ¹ /2	300	150	NA	920	753	649		
2	300	150	125	290	231	199		
3	275	150	125	103	104	90		
4	150	150	100	47	37	32		
6	150	150	100	22	18	16		
8	150	150	100	19	12	11		
10	150	150	75	12	10	8		
12	150	150	75	7	6	5		
14	125	150	-	7	6	5		

Designation Codes	ASTM D2	2997
	Designat	tion Codes

1 ½"- 4"	RTRP-21CW-4556
6"	RTRP-21CW-4555
8"	RTRP-21CW-4554
10"-12"	RTRP-21CW-4553
14"	RTRP-21CW-4552

(1) Static pressure ratings, typically created with use of a gear pump, turbine pump, centrifugal pump, or multiplex pump having 4 or more pistons or elevation head.

(3) Socket elbows, tees, reducers, couplings, flanges and nipples joined with WELDFAST ZC275 adhesive.(4) Flanged elbows, tees, reducers, couplings and

nipples assembled at factory.

(5) Laterals, crosses, and saddles.

(6) Ratings shown are 50% of ultimate; 14.7 psi external pressure is equal to full vacuum.

(2) For insulated and/or heat traced piping systems, use 100% of the uninsulated piping recommendations up to 200°F and reduce these ratings 50% for 200°F to 225°F operating temperatures. Centricast RB-1520 pipe and epoxy fittings can be used in drainage and vent systems up to 250°F operating temperatures. For compressible gasses consult the factory for pressure ratings. Heat cured adhesive joints are highly recommended for all piping systems carrying fluids at temperatures above 120°F.

Reco	Recommended Operating Ratings									
	Axial Tensile Loads Max. (Lbs)		Axial Tensile LoadsAxial CompressiveMax. (Lbs)Loads Max. (Lbs)		Bending Badius Min	Torque Max.	Parallel Plate Loading ASTM D2412			
Size (In)	Tempe @ 75°F	erature @ 225°F	Tempei @ 75°F @	rature 225°F	(Ft) En- tire Temp. Entire Temp Range Range		Stiffness Factor In ³ Lbs/In ²	Pipe Stiffness (psi)	Hoop Modulus x10 ⁶ (psi)	
1 1/2	5,000	4,100	5,800	2,800	59	113	279	2,632	2.2	
2	5,400	4,500	6.300	3,000	73	163	317	1,444	3.8	
3	8,000	6,700	9,300	4,500	108	368	317	433	3.8	
4	10,400	8,600	12,100	5,900	139	620	317	200	3.8	
6	18,400	15,300	21,500	10,400	204	1,632	547	107	3.8	
8	28,000	23,300	32,700	15,900	266	3,246	709	62	3.1	
10	39,900	33,300	46,600	22,600	331	5,786	1,195	54	3.5	
12	53,300	44,400	62,200	30,200	393	9,178	1,701	46	3.5	
14	58,600	48,800	68,400	33,200	432	11,108	1,701	35	3.5	
⁽¹⁾ Compres	ssive loads are	for short colun	nns only. Buck	ling loads mu	ist be calculated v	when applicable.				

Support

Proper pipe support spacing depends on the temperature and weight of the fluid in the pipe. The support spacing table is based on unrestrained continuous beam theory using the pipe bending modulus derived from long-term beam bending tests. The maximum spans lengths were developed to ensure a design that limits mid-span deflection to 1/2 inch and dead weight bending to 1/8 of the ultimate bending stress. Any additional loads on the piping system such as insulation, wind, seismic, etc. requires further consideration. Restrained (anchored) piping systems operating at elevated temperatures may result in guide spacing requirements that are shorter than unrestrained piping systems. In this case, the maximum guide spacing governs the support span requirements for the system. Pipe spans near elbows require special attention. Both supported and unsupported elbows are considered in the following tables and must be followed to properly design the piping system.

There are seven basic rules to follow when designing piping system supports:

- 1. Do not exceed the recommended support span.
- 2. Support heavy valves and in-line equipment independently.
- 3. Protect pipe from external abrasion at supports.
- 4. Avoid point contact loads.
- 5. Avoid excessive bending. This applies to handling, transporting, initial layout, and final installed position.

- 6. Avoid excessive vertical loading to minimize bending stress on pipe and fittings.
- 7. Provide adequate axial and lateral restraint to ensure line stability during rapid changes in flow.

Maximum Support Spacing for Uninsulated Pipe ⁽¹⁾								
Pipe Size	Continuou	is Spans of I	Pipe (Ft.) ⁽²⁾					
(In.)	75°F	225°F						
1½	16.6	16.0	15.9					
2	17.3	16.7	16.6					
3	19.4	18.7	18.6					
4	20.9	20.1	20.0					
6	24.2	23.3	23.2					
8	26.9	26.0	25.8					
10	29.5	28.4	28.2					
12	31.7	30.6	30.4					
14 32.5 31.4 31.4								
⁽¹⁾ Consult factory ⁽²⁾ Maximum mid-	⁽¹⁾ Consult factory for insulated pipe support spacing. ⁽²⁾ Maximum mid-span deflection ½" with a specific gravity of 1.0.							

Piping Span Adjustment Factors With

Supported Fitting at Change in Direction

Support Spacing vs. Specific Gravity **Specific Gravity** 3.00 2.00 1.50 1.25 0.75 1.00 Gas/Air Multiplier 0.76 1.00 1.07 0.84 0.90 0.95 1.40

Example: 6" pipe @ 150° F with 1.5 specific gravity fluid,maximum support spacing = $23.9 \times 0.90 = 21.5$ ft.

Piping Span Adjustment Factors With Unsupported Fitting at Change in Direction

Span Type Factor Span Type Factor 1.00 а Continuous interior or fixed end spans Continuous interior or fixed end spans 1.00 а Second span from simple supported end or Span at supported fitting or span adjacent to a 0.80 b b 0.80 unsupported fitting simple supported end ≤ 0.75* Sum of unsupported spans at fitting c + d Simple supported end span 0.67 e Simple supported end span 0.67 е e. e, ъ ้ว ้อ * For example: If continuous support span is 10 ft., c + d must not exceed 7.5 ft. (c = 3 ft. and d = 4.5 ft. would satisfy this condition).

Thermal Expansion

The effects of thermal gradients on piping systems may be significant and should be considered in every piping system stress analysis. Pipe line movements due to thermal expansion or contraction may cause high stresses or even buckle a pipe line if improperly restrained. Several piping system designs are used to manage thermal expansion and contraction in above ground piping systems. They are listed below according to economic preference:

- 1. Use of inherent flexibility in directional changes
- 2. Restraining axial movements and guiding to prevent buckling
- 3. Use expansion loops to absorb thermal movements
- 4. Use mechanical expansion joints to absorb thermal movements

To perform a thermal analysis the following information is required:

- 1. Isometric layout of piping system
- 2. Physical and material properties of pipe
- 3. Design temperatures

- 4. Installation temperature (final tie-in temperature)
- 5. Terminal equipment load limits
- 6. Support movements

A comprehensive review of temperature effects on fiberglass pipe may be found in Fiber Glass Systems' **Engineering and Piping Design Guide.**

Change in Temperature °F	Pipe Change In Length (In/100 Ft)
25	0.29
50	0.58
75	0.86
100	1.15
125	1.44
150	1.73
175	2.02
200	2.30

Re	Restrained Thermal End Loads and Guide Spacing										
	Operating Temperature °F (Based on Installation Temperature of 75°F)										
	1:	25	1	50	17	175		200		225	
Size (In)	Guide Spacing (Ft)	Thermal End Load (Lbs)	Guide Spacing (Ft)	Thermal End Load (Lbs)	Guide Spacing (Ft)	Thermal End Load (Lbs)	Guide Spacing (Ft)	Thermal End Load (Lbs)	Guide Spacing (Ft)	Thermal End Loads (Lbs)	
1 ½	8.2	982	6.6	1,440	5.6	1,862	4.9	2,255	4.4	2,609	
2	10.5	1,046	8.4	1,533	7.1	1,983	6.2	2,401	5.6	2,779	
3	15.6	1,564	12.6	2,292	10.6	2,963	9.3	3,589	8.4	4,153	
4	20.2	2,024	16.3	2,966	13.8	3,835	12.0	4,645	10.8	5,374	
6	29.9	3,590	24.0	5,262	20.4	6,804	17.8	8,240	16.0	9,535	
8	39.0	5,463	31.4	8,007	26.6	10,354	23.2	12,539	20.9	14,510	
10	48.6	7,793	39.1	11,421	33.2	14,768	29.0	17,886	26.0	20,696	
12	57.7	10,406	46.5	15,251	39.4	19,721	34.4	23,883	30.9	27,637	
14	63.4	11,441	51.1	16,768	43.3	21,682	37.8	26,528	34.0	30,385	

Elbow Strength			
Allowable Bending Moment 90° Elbow			
Nominal Pipe Size (In)	Allowable Moment (Ft•Lbs)	Nominal Pipe Size (In)	Allowable Moment (Ft•Lbs)
11/2	150	8	2,850
2	225	10	4,500
3	475	12	6,500
4	650	14	10,000
6	1,650		

North America 17115 San Pedro Ave. Suite 200 San Antonio, Texas 78232 USA Phone: 210 477 7500

South America Avenida Fernando Simoes Recife, Brazil 51020-390 Phone: 55 31 3501 0023

Europe P.O. Box 6, 4190 CA Geldermalsen, The Netherlands Phone: 31 345 587 587

<u>Asia Pacific</u> No. 7A, Tuas Avenue 3 Jurong, Singapore 639407 Phone: 65 6861 6118

Middle East P.O. Box 17324 Dubai, UAE Phone: 971 4881 3566

www.fgspipe.com · fgspipe@nov.com

NOY Fiber Glass Systems

© 2012 National Oilwell Varco. All rights reserved. CI1610 -June 2010